
i'

NASA Technical Memorandum 00553

A SURVEY OF PROVABLY CORRECT

SYNCHRONIZATION TECHNIQUES
FAULT-TOLERANT CLOCK

(&ASA-TM-100553) A SURVEY CF ElrCVAELP 188-2C894
CGBRECT FAULT-TCLEEANX CLCCK ~ Y 6 C H A 6 1 1 2 A T f O N
% K H l J l Q U E S (LASh) 28 p CSCL 09B

Uoclas
G3/62 01345S8

Ricky W. Butler

February 1988

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

INTRODUCTION

The reliability of a fault-tolerant computer system depends critically upon
adequate synchronization between its redundant processors.
that the synchronization algorithm maintain proper synchronization of the good
clocks even in the presence of other faulty clocks.
techniques are used to develop the synchronization system of a fault-tolerant
system.
careful Failure Modes and Effects Analysis (FMEA), yet be susceptible to subtle
failures. For example, the "intuitively correct" 3-clock, mid-value select
synchronization algorithm is not fault-tolerant. A single faulty clock can
cause the other two good clocks to become desynchronized.
synchronization problem is far more subtle than it appears on the surface.
Ad hoc algorithms are often assumed to be correct without rigorous analysis.
Furthermore, despite the fact that the synchronization algorithm is the
foundation of many fault-tolerant systems, the probability of system failure
due to a synchronization failure traditionally has not been included in the
reliability analysis of such systems (ref. 1.).

Recently, many provably correct fault-tolerant clock synchronization
algorithms have appeared in the literature. Provided with each algorithm is a
mathematical theorem which provides a bound on the clock skew as a function of
measurable system parameters such as the maximum drift rate between good clocks
or the maximum error in reading another non-failed processor's clock. It is no
more difficult to build a system using one of these provably correct algorithms
than it is to build one using an algorithm based on intuition.
necessary for fault-tolerant system designers to invent new algorithms and
perform elaborate mathematical proofs, since such work is readily available.
System designers can concentrate on methods to efficiently implement these
existing algorithms.
Appendix A.

It is the goal of this paper to present (in a consistent notation) the
fault-tolerant clock synchronization algorithms which have appeared in the
literature.
a discussion of the assuniptions of the techniques.

It is important

Many times ad-hoc

Unfortunately, synchronization systems can appear to be sound under a

The clock

It is not

Some important implementation issues are discussed in

The associated performance theorems'will be presented along with

SrnOLS

mean time for a processor to read another processor's clock
clock p's value at real time t
clock read error -- the error in the clock value obtained by
processor p when reading clock q
number of faulty clocks in the system
total number of clocks in the system
the real time when clock p's value is T

time between resynchronizations (i.e. synchronization period)
time required to execute/perform synchronization algorithm
the ith synchronization period
maximum skew between any two clocks in the system
initial skew between clocks in the system
the apparent clock skew between processors q and p as perceived
by processor p.

the correction to clock p during the irh resynchronization period
the maximum clock read error (eqp)
maximum drift rate of all the clocks in the system

PRELIMINARY CONCEPTS

Definition of a clock

It is convenient to define a clock as a function from real time t to clock
time T:
of small letters for real time and capital letters for clock time. The concept
of a clock function is illustrated in figure 1.
clock is a monotonic increasing function, its inverse function is well-defined.

C(t) = T. Real time will be distinguished from clock time by the use

Since a properly functioning

Some of the clock synchronization theorems are formulated using the clock
function and others using the inverse function: r(T) = C 1 (T) = t. A clock

function will be designated by a capital C and the inverse function by a
lowercase r . ,

1 A l t h o u g h C (t) a n d r (T) a r e d i f f e r e n t f u n c t i o n s , t h e y r e p r e s e n t t h e s a m e
c l o c k from'two d i f f e P e n t p e r s p e c t i v e s . S o m e t i m e s i t i s n e c e s s a r y t o s w i t c h
f r o m o n e v i e w t o t h e o t h e r . T h i s d o e s n o t c h a n g e t h e c l o c k i t s e l f .

2

C(t)=t (a perfect clock)

real time (t)

Figure 1. - The clock function

Subscripts will be used to distinguish different clocks, for example,

Cp (t)
C,(t)
rp(T)

-- clock p's value at real time t
-- clock q ' s value at real time t
-- the real time when clock p's value is T

We will let n represent the total number of clocks in the system and m the
number of faulty clocks.

Drift Rates of Nonfaulty Clocks

A fault tolerant system typically consists of several processors each with
its own local clock.
clock does not maintain perfect time.
concept of clock drift rate.

Unfortunately, even when a processor is non-faulty its
Therefore, it is necessary to define the

DEFINITION '. A clock r(T) has an instantaneous drift rate D(T) =

Ir'(T) - 11 at clock time T.

DEFINITION 2a A clock is nonfaulty if r(T) is a monotonic,
differentiable function of T and there exists a p such that:

D(T) = 1 r'(T) - 1 I < p/2.

3

Thus, the drift rate of a nonfaulty clock is bounded by
of p is 1 psec/sec or An alternate formula for p in terms of r(T)
is easily derived:

p/2. A typical value

-p/2 < r‘(T) - 1 < p/2

T2 T2 T2

Tl Tl Tl
J 1-p/2 dT < J r‘(T) dT < J l+p/2 dT (4)

Letting t, = r(T2) and t, = r(T,), we can write C(t,) = T, and C(t,) = T,.
the above formula can then be rewritten as

It is possible to start with this formula as the definition of clock drift. If
this is done, the requirement of differentiability of the clock function can be
removed.

Some synchronization algorithms are defined using the following alternative
definitions of a good clock:

DEFINITION 2b A clock C is a nonfaulty clock if there exists a p2 such
that for all t,, t,:

4

DEFINITION 2c A clock C is a nonfaulty clock if there exists a p3 such
that for all t,, t2:

The near equivalence of these definitions can be seen by examining the
Taylor series expansion of (l+p)-I:

(l+p)-l = 1 - p + p2 - p3 + p4 - ... (10)

Thus for small p:

(l-p)-1 = 1 + p (12)

For the typical value of p = the difference between (1-p) and (l+p)-l is
on the order of 10-l2. Thus p2 = p, = p/2.

Synchronization

DEFINITION 3 TWO clocks rp and rq are synchronized to within 6 of each
other at clock time T i f

Since the clocks drift apart, it is necessary to periodically resynchronize
the clocks of the system.
algorithms: continuous-update and discrete-update.
class, the frequency of the clock oscillator is continuously updated by analog
circuitry. In the discrete-update
algorithms, the clock value and/or frequency is changed at discrete intervals.
The time of resynchronization is typically determined by each processor from
its own local clock. The period of time between resynchronizations is usually

There are two basic classes of synchronization
In the continuous update

This method is used in phase-lock methods.

5

constant, say R. Using T (i) as the clock time at the beginning of the i t h
period, TCi) = T (O) + iR. For each period there is a different clock
definition :

where f&,(i) is the ith clock correction.
formally represented by a sequence of mathematical functions each applicable to
a different interval of real time.

Thus, the time base of the system is

This is illustrated in figure 2 .

T

Figure 2. Sequence of clock functions

Each function differs from its predecessor by a constant.
required to execute the synchronization algorithm must be less than

The time S
R.

Clock Read Error

In clock synchronization algorithms, it is necessary that a processor
determine its clock skew with respect to every other clock in the system.
is logically equivalent to reading another processorrs clock. Since the
process of reading another processor‘s clock is subject to error,
can only obtain an approximate view of its skew with respect to other
processors. The notation Aqqp will be used to represent processor p’s
approximate view of its skew with respect to processor q. The following
definition formalizes this concept:

This

a processor

6

DEFINITION 4 When processor p reads processor q ' s clock, processor p
obtains an approximate skew A q p . Processor p's error eqp in reading
processor q 's clock is:

DEFINITION 5 If processors p and q are nonfaulty then processor p
obtains an approximate skew Aqp such that

Thus, E is a bound on the clock read error and will be referred to as the
maximum clock read error.

usually the approximate skew A,, is determined by reading another
processor's clock. First, processor p reads q ' s clock at real time t,
and obtains Cq(t,). If processor p subsequently reads its own clock at real
time
processor's clocks can be calculated as follows:

t, obtaining Cp(t2), then the approximate skew between the two

where b is an implementation parameter. The value of b is the mean time
for processor p to read processor q ' s clock., In any real system, there
will be some variation in the time to read another processor's clock.
error in Aqp is attributable to the variation in the time it takes to read
the other processor's clock.

assumption of a bounded read error.
variation in the communication times between the processors,
shown to be a bound on the communication variation, i.e., the communication
time is greater than 13-c and less than b+c.
the next section.

The

All clock synchronization algorithms discussed in this paper depend on the
Since the cause of the read error is the

c can also be

This relationship is derived in

2 T h e r e m a y b e m a n y c o m p o n e n t s o f b -- t i m e t o r e a d c l o c k p , t i m e t o r e a d
c l o c k q , t i m e t o t r a n s m i t c l o c k q t o p r o c e s s o r p , t i m e f o r p r o c e s s o r p
t o r e c o g n i z e r e c e i p t o f c l o c k q , e t c .

7

Read error and communication delay. The relationship between clock read
error and the communication-time variation is easily derived from the last two
definitions. By substituting equation (17) in (15), we have

(T) = rPci)(T + C,(t,) - [C,(t,) + bl) - rq(i)(T)
e¶ P

By definition 5 we have,

Since the above formula is true for all T it is certainly true for T=T,.
we have

Thus

Since T, = Cq (t, 1 ,

Using the highly accurate approximation in lemma 1 of the appendix B which is
valid for small b,

I t, - t, - b I < E

This yields

Thus, the communication delay t, - t,
delay - + max. clock read error).

(2 4)

is bounded by b - + E (i.e. the average

8

Initial Synchronization

Many fault-tolerant clock synchronization algorithms are dependant on a
close initial synchronization.
initialization process is not critical (if it fails, you just start over), the
initialization procedure does not have to be fault tolerant.
provide an alternate algorithm for initialization or explicitly provide for it
in the main algorithm. If a fault-tolerant initialization procedure is not
provided it is necessary to at least develop a technique to detect when the
level of initial synchronization is not adequate.

Some authors argue that since the system

Others either

LAMPORT, MELLIAR-SMITH INTERACTIVE CONVERGENCE ALGORITHM

The Lamport and Melliar-Smith algorithm (LMS) is based on a modified
average. (See ref. 2 .) This algorithm is in the class of discrete-update
algorithms.
the processor first estimates its skew relative to every other processor in the
system. All skews which are greater than a fixed value Q are ignored. The
mean of the remaining clock skews is used as the correction factor.

When a processor's clock reaches the next resynchronization time,

ALGORITHM: for all processors p

where

n

if r # p and \ A r p I < R then arp = A r e

Lamport and Melliar-Smith proved the following theorem which characterizes
the worst-case performance of this algorithm in terms of low-level system
parameters. (See ref. 2 .)

9

THEOREM: I f

3m < n

n
6 2 Max [- 3m [,,,,R + 2 - n - m S I] , 6, + p R }

n

6 << Min { R, &/p }

Then the ALGORITHM satisfies the following:

SI. If up to time T(i+l) processors p and q are nonLdulty, Len for all T in
the interval [T(i) , T (i + l) I :

S2. If process p is nonfaulty up to time T(i+l), then

Statement (Sl) of the theorem states that the maximum skew between any two
nonfaulty clocks will be less than 6 .

theorem as a function of parameters n, m, E , p , 52, R , and S. Statement (S 2)

guarantees that the maximum correction will be less than 9.
true for any value of 6 which satisfies the above constraints. The
constraint 6 < 6, + pR reveals that the algorithm cannot guarantee that
synchronization will ever be any tighter than the initial degree of
synchronization + the maximum amount of separation that can occur between two
non-faulty clocks during an interval of length R . 3

The lower bound on 6 is given in the

The theorem is

The second constraint is

2 & + p (R + 2 -
n

n

n - 3m 6 2

3 T h e t h e o r e m is p r o v e d u s i n g a “worst c a s e ” a n a l y s i s . S i n c e t h e worst-case
a n a l y s i s i n c l u d e s t h e e f f e c t of malicious f a i l u r e which is r a r e , the
a l g o r i t h m typically performs much better than the worst c a s e result suggests.
A s t o c h a s t i c a n a l y s i s which determines an expected level of synchronization
h a s n o t y e t b e e n p e r f o r m e d . H o w e v e r , for life-critical a p p l i c a t i o n s , it is
essential t h a t a l l s y s t e m f u n c t i o n s must p e r f o r m c o r r e c t l y in t h e p r e s e n c e o f
t h e w o r st-case b e h a v i o r of t h e s y n c h r o n i z a t i o n a l g o r i t h m . T h i s o f t e n results
i n a p e r f o r m a n c e l o s s , but is unavoidable.

*

10

It is noteworthy that this bound on the clock skew is not only a function of
clock read error
processors n and m respectively. Thus, the worst-case performance of the
algorithm will vary when processors fail and when the system reconfigures.
This can significantly complicate the reliability analysis of the system. (See
ref. 1.)

communicate with every other processor in the system.

E but also a function of the number of active and faulty

This algorithm implicitly assumes that every processor can directly

LUNDELIUS AND LYNCH ALGORITHM

The Lundelius and Lynch algorithm (LL) runs periodically on each of the
processors in the system (ref. 3) and thus is a discrete-update algorithm.
When each processor's clock reaches T(i), it broadcasts a message. The
algorithm is based on the assumption that each processor can directly
communicate with every other processor. The processor collects clock messages
from the other processors until TCi) + (l+p)(G+b+~). These messages are used
to create an ordered set of skews with respect to the other processors:

and

Dl < D, < D3 < ... < 9.

(Note. For each j there exists a q such that Dj = AqP and for each p
there exists an j such that Dj = & . I

ALGORITHM: For each processor p and a specific level of fault tolerance
f, the following is performed:

where

11

THEOREM: If

3m 5 3f < n
R 2 2(l+p)(6+~) + (l+p)max{b,b+s} + pb
R 5 6/4p - E/p - p(b+b+&) - 26 - b - 2s

6 2 4~ + 4 p (3 6 + b + 3 ~) + 8 p 2 (6+b+s)

Then the ALGORITHM satisfies the following:

S1. If up to time T(i+l) processes p and q are nonfaulty, then for all T in
the interval [TCi) ,T(i+l) 1:

S2. If process p is nonfaulty up to time T (i + l) , then

The theorem reveals that the algorithm will maintain synchronization to
within b as long as the specified constraints are met. The first constraint
3m < 3f < n shows that the algorithm can only tolerate a certain number of
failures. The last 3 formulas can be used to determine the level of
synchronization obtainable by the algorithm. For a particular system, the
parameters p , E, and b are fixed. Therefore, these formulas define the
relationship between 6 and R for a particular system. The first of these
three formulas constrains the synchronization period.
containing

Ignoring terms
this formula becomes: p (since it is usually very small --

Since b, 6, E are typically on the order of seconds and R is on the
order of l o m 1 , this constraint is usually insignificant.
equations impose a lower bound on 6.
equations can be written as:

The last two
By simple algebraic manipulation these

12

4pR + 4€(1+2p+p2) + 4p(l+p)b
U '

1 - 8 p - 4p'
(2 7)

4~ + 4p(b+3~) + 8 p 2 (b + c)
6 5

1 - 12p - 8p2
(2 8)

Once again, since P is a dimensionless quantity which is very small, these
equations can be rewritten as:

6 5 4pR + 4~ +4pb

6 S4E + 4 P (b + &)

The above two constraints are satisfied whenever:

This formula can be used as the maximum clock skew which will occur in a system
which uses this algorithm.
drift rates and assuming direct communication between the processors of the
system.

The theorem was proved using definition 2c for

HALPERN, SIMMONS, STRONG, DOLEV ALGORITHM

The Halpern, Simmons, Strong, Dolev (HSSD) algorithm is a discrete-update
algorithm, but differs from the LMS and LL algorithms in that it does not
rely on some form of averaging. (See ref. 4.) Periodically each processor
seeks to be the synchronizer of the system. The non-faulty processors each
know what time the next synchronization interval will occur.
become the synchronizer at approximately the same time.
processors are not faulty, only one of the processors becomes the
synchronizer. If the synchronizer fails, the algorithm is designed such that
the remaining good processors effectively take over and synchronize despite
the erroneous behavior of the synchronizer.

They all seek to
When all of the

13

The algorithm relies on the use of unforgeable digital signatures. It is
necessary that each processor be able to encode a message using a unique
encoding function such that no other processor can generate or alter the
message without invalidating it.
digital signatures. (See ref. 5.) Furthermore, every processor can determine
who encoded the message.
authentic or forged.

clock read error is not directly specified.
the algorithm was proved under the assumption that the comication delay is
bounded by 0 and an upper bound (i.e. & E) . This is less restrictive than is
implied by definition 2. Thus, the theorem should still be true if the clock
read error were defined in terms of definition 2.

Standard techniques exist for implementing

Thus, a processor can determine if a message is

The bound on the clock drift rate is defined using definition 2c. The
The theorem which characterizes

Each processor p executes the following two concurrent tasks:

Task TM:
IF Cp(t) = ET THEN

SIGN - - AND SEND "The time is ET";
Cp(t) := ET;
ET := ET + R;

ENDIF;

Task MSG:
IF an authentic message M is received saying "The time is T" THEN

S := the number of distinct signatures
IF %ET and ET-S*D < C,(t) THEN

SIGN AND SEND M;
C,(t) := ET; ET := ET + R;

- -

END1 F
ENDIF

These tasks execute as concurrent processes on a processor. If an
authentic message is received on a processor before its clock reaches the next
synchronization time ET, then task MSG is executed.
has been received and a processor's clock reaches ET then task TM is executed.
Note, that after TM sends a message, ET is incremented. Thus, after TM is
complete all the other synchronization messages for this period are ignored.

If no authentic message

14

Likewise, after task MSG signs a message, ET is incremented so that TM cannot
send a message until the next synchronization period.
algorithm is the ET-S*D < C,(t) test of task MSG.
is a function of the number of signatures of the message.
signature, then the message must arrive in the interval [ET-D,ET], in order
for the message to be signed and forwarded.
the message must arrive in the interval [ET-3*D,ET].
tasks are non-preemptable.

A key aspect of this
The "window" of acceptance

If there is one

If there are 3 signatures, then
It is assumed that these

THEOREM If

6 = (l + p) S + p(2+p)R
D >= 6
R 2 S(l+p) + mD

Then

s1:

s2 :

This algorithm does not require direct comication between all of the
processors of the system.
with another good processor they remain synchronized.
this algorithm are S and R. The parameter S represents the maximum time
required to execute the synchronization algorithm.
theorem, this is shown to be the maximum delay in sending a message from a
good processor to another good processor in the network.
function of the structure of the network.
the good processors can communicate, they will remain synchronized to within
6. But since 6 is a function of S and S is a function of network
connectivity, the level of synchronization obtainable may degrade as

connections are lost in the network. The parameter R is the period of
resynchronization. As expected, increasing the frequency of resynchronization
increases the degree of synchronization obtained.

their algorithm which can synchronize an unsynchronized clock.

In fact as long as a good processor is in contact
The key parameters in

In the proof of the

This is obviously a
The theorem states that as long as

Halpern, Simons, Strong and Dolev also presented a more powerful form of
This extended

15

algorithm
synchronization with the rest of the processors.
basic algorithm with a Byzantine broadcast among the active processors in
order to agree when to allow a processor to join them.
algorithm will not be presented here, but can be found in reference 4.

is capable of bringing a repaired processor back into
This algorithm extends the

The details of this

KESSEL'S ALGORITHM

In this section one of the two algorithms developed by J. L. W. Kessels is
presented. (See ref. 6.) The other algorithm is basically the same as the
one discussed in this section, except that it utilizes an analog circuit which
was not characterized formally. No proof of correctness was given for this
algorithm.
in the class of continuous-update algorithms.
assumption that the transmission delays between the separate clocks are
negligible.
algorithm will not work.

between two states.
value of the clock is the number of the last transition.
defined to be synchronized if their values are equal for at least some part of
their state interval.
maximum clock skew is 1/(2u).

He later demonstrates that it is equivalent to a concurrent program whose
correctness can be formally analyzed.
algorithm will be presented. For details on an appropriate hardware solution
and details about the correctness proof the reader is referred to reference 6.

values of j for which P(j) is true. For example

Kessel's synchronization method is a hardware solution and falls
It depends fundamentally on the

If there is a significant variation in these delays, the
Thus, this algorithm assumes that E = 0.

A clock is defined in terms of signal that periodically transitions
The states of this clock are numbered sequentially.

W o clocks are

If the minimum frequency of the clocks is u, the

The

Kessels first presents his algorithm in terms of a circuit block diagram.

In this section only the concurrent

The notation Nj: P(j) will be used as an abbreviation for the number of

Nj: C,(t) > C,(t)

is an abbreviation for

16

which is the number of clocks which are greater than clock j .

commands. (See ref. 7 .) Each command separated by I is a guarded command.
The guarded command consists of a guard (i.e. a Boolean expression) followed
by a + and a statement.
loop, which are separated by I execute concurrently.
Boolean expressions is true the loop is continued.
currently true then one of them is selected nondeterministically (i.e. which
one is selected is determined randomly.)

The algorithm
for the ith process (on processor i) is:

The concurrent algorithm is described using Dijkstra's concept of guarded

All of the guarded commands within the do - od
As long as one of the

If more than one guard is

The Kessels algorithm consists of n concurrent processes.

I [Nj: C,(t) < Cj(t)] > f or k, = K - 1
od

+ ki := 0; Ci(t) := C,(t) + 1

Since it is impossible that all of the guards become false simultaneously, the
loop never terminates.
ability of a good clock to read all of the other clocks with negligible error.
Exactly what constitutes a negligible read error is never defined.
Furthermore, there is no mathematical proof which relates the impact of read
error on the synchronization. The parameter K determines the rate at which
the clock counter is incremented. The clock rate is K times the time
required to execute the loop. Kessels shows how a circuit can be designed to
insure that all the good processors compare their values with the other clocks
when none of the clocks are in transition. He refers to this as the
"interlude" phase.

The correctness of the above algorithm depends on the

17

ALGORITHMS BASED ON PHASE-LOCKING

Given two non-faulty voltage-controlled oscillators, phase-locked loop
For more details on such circuitry can be used to keep them synchronized.

circuitry the reader is referred to ref. 8.
algorithms which use this phase locking technique will be discussed.
these algorithms depend on the assumption that the phase-locking circuitry
maintains adequate synchronization between two non-faulty oscillators.
basic problem is how to select a "standard" signal for each clock in the
system in a manner that guarantees that all non-faulty clocks will remain
synchronized despite the arbitrary behavior of the faulty clocks.

T. Basil Smith designed a fault-tolerant four-clock, phase-locking
synchronization algorithm for the Fault-Tolerant Multi-Processor (FTMP). (See
refs. 8 and 9.)
three clocks continuously and determines its phase difference with respect to
each of them. These phase differences are ordered:: TI 2 T, 2 T,. Each clock
selects the second signal as the reference signal to which it can phase-lock.
Phase-lock algorithms are continuous-update algorithms.

of the phase-lock circuitry.
belongs to the class of continuous-update algorithms.
clock synchronization algorithms have not included a mathematical analysis of
the phase-lock circuitry used in their algorithm.
disadvantage of the phase-clock algorithms -- the maximum clock skew has not
been characterized in terms of the specific parameters of the phase-lock
circuitry.

In this section fault-tolerant
Each of

The

Each clock in the system observes the outputs of the other

The degree of synchronization obtained is dependent on the effectiveness
This circuitry is intrinsically analog and

The developers of these

This is a distinct

KFUSHNA, SHIN, BUTLER ALGORITHM

The algorithm presented by Krishna, Shin, and Butler (see ref. 10) is a
generalization of Smith's algorithm for more than four clocks.
the median signal does not work for higher levels of redundancy.
median select algorithm, it is possible for malicious failures to partition
the set of clocks into two or more separate "cliques" which are internally

Surprisingly,
With a

synchronized but
have a system of

not synchronized with other cliques. To see this,
7 clocks. Such a system should be able to mask the

suppose we
failure of

18

two clocks. Suppose that the 5 good clocks are named a, b, c, d, e and the
bad clocks are named x and y. If the transmission delays between clocks
are negligible, then the order of arrival of all the signals from the good
clocks should be the same on all the processors. If the bad processors fail
maliciously, their order may be seen differently by different processors.
Consider the following ordering of signals seen by each of the processors in
the system.

order seen by a:
order seen by b:
order seen by c:
order seen by d:
order seen by e:

x y a b c d e
x y a 6 c d e
a b c d e x y
a b c d e x y
a b ? - d e x y

The order of the signals from the good processors a,b,c,d and e
consistently by all the processors. The faulty processors x and y are
seen differently by the processors of the system. Letting c + b represent
the relation that b synchronizes to c, If each processor selects the
median signal (i.e. the third signal; underlined above) not including itself,
then the following synchronizations will occur from the above scenario:

is seen

a - b e - + c * d

Thus {a,b} and (c,d,e) form non-synchronizing cliques.
The following algorithm has been shown to prevent the creation of non-

synchronized cliques.

THEOREM If n 2 3m+l and the signal selected on processor p, f,(N,m), is
defined as follows

2m if % < n-m
m+l if Ap 2 n-m

f,(n,m) =

where % is the order of processor p in the temporal sequence of arriving
clock signals, then all the non-faulty clocks of the system will synchronize.

For the situation above n=7, -2:

19

thus

fa = 4 and a -+ b
f, = 4 and b + c
f, = 4 and c + e
f, = 4 and d -+ e
f, = 3 and e + c

The following synchronizing relationship results with no cliques:

This algorithm depends on the use of phase-lock circuitry which was not
characterized formally.
skew to parameters of the phase-lock circuitry.

No theorem was presented which relates maximum clock

CONCLUDING REMARKS

The synchronization of the clocks of a multi-processor system is a
critical function in a fault-tolerant system.
redundancy in the system, if the clocks become deskewed, total system failure
is almost always certain.
be used in the design of a fault-tolerant computer system.
algorithms have appeared in the engineering literature. Unfortunately, these
algorithms and their associated performance theorems are difficult to decipher
and compare, since they are presented in different notations.
presents in the same notation six different algorithms which have appeared in
the literature.
take advantage of these algorithms whose performance properties have been
analyzed mathematically.
difficult to implement than ad-hoc techniques. It is suggested that future
system designers either exploit the available algorithms and concentrate on
efficient and correct implementation or mathematically prove the algorithms
which they develop for their systems.

Regardless of the level of

It is imperative that provably correct algorithms
Many such

This paper

It is hoped that future critical system developments will

The provably correct algorithms are no more

20

APPENDIX A

IMPLEMENTATION OF SYNCHRONIZATION ALGORITHMS

There are three basic problems to be solved when implementing a clock
synchronization algorithm:

(1) scheduling the synchronization algorithm on the local processors

(2) reading all the other processor's clocks in the system

(3) computing a correction based upon the algorithm and updating the local
clock

In the next two sections these steps will be discussed.

Step 1 - Scheduling the Synchronization Task

The clock synchronization algorithms discussed in this paper depend upon
Most real-time systems are based on a cyclic scheduler, so periodic execu'tion.

the clock synchronization algorithms fit naturally into such a system.
systems are driven by a clock-interrupt. The interrupt is set to fire
periodically. When the interrupt fires, the processor immediately transfers
control to the scheduler which then transfers control to a task. This can
usually be accomplished with only a minimum overhead.
requirements of the clock synchronization task can usually be met with a high
degree of accuracy.

These

The scheduling

Step 2 - Reading Clocks

There are two basic approaches to implementing the clock read function in a
system of multiple processors -- (1) a distributed read (2) coordinated
broadcast.

21

METHOD 1 - distributed read. - If the system is desigr 3 such that a
processor can read the clock of another processor (say be direct memory
access), then the read error becomes a func'ion of the worst case memory
contention time.
Conceptually, this represents the simplest method of implementing the
distributed clock read function.
implemented so that a processor can only read a portion of another processor's
memory.
the local processor by contending for its memory.
synchronization obtainable, will depend on the magnitude and variation in the
times required to read another processor's clock.
to-point access will provide the most accurate clock-reading capability.

The clock could be a multi-ported memory-mapped i/c device.

It is essential that the global read be

In this way, another processor cannot interfere with the activities of
The degree of

Direct bi-directional point-

METHOD 2 - coordinated broadcast. - If a system of processors has a
broadcast capability, a global clock read capability can be implemented using
this facility. This was done for the SIFT computer. (See ref. 1.) It should

be noted that when this is done, the clock read function depends on the
synchronization alg~rithm.~ The beginning of the synchronization task is
divided into a sequence of "windows", one window per processor.
transmit window, a processor repeatedly reads its clock and broadcasts its
value. All other processors wait until either the clock value arrives or the
window ends. Since the accuracy of processor p's perception of clock q
depends on how quickly processor p recognizes receipt of clock q's value,
processor p executes a tight "wait-for loop" until clock q ' s value arrives.
When the clock value is received, processor p reads its clock. The skew is
calculated as the difference between the two clocks minus the approximate
communication delay. When all windows are completed, the correction is
calculated, and the clock is corrected. Within its broadcast window, a
processor q reads its clock at real time t, and transmits the value Cq(tl)
to process p. Upon receiving the message at t,, processor p immediately
reads its clock to obtain

During its

C P (t 2 1. This is illustrated in figure 3 .

4 T h u s , t h e r e i s a m u t u a l d e p e n d e n c y -- t h e s y n c h r o n i z a t i o n a l g o r i t h m d e p e n d s
o n t h e c l o c k r e a d f u n c t i o n a n d t h e c l o c k r e a d f u n c t i o n d e p e n d s o n t h e
s y n c h r o n i z a t i o n . I f t h i s t e c h n i q u e i s u s e d , t h e n t h e c o r r e c t n e s s p r o o f o f
t h e s y n c h r o n i z a t i o n s y s t e m m u s t d e a l w i t h t h e c l o c k r e a d m e t h o d a n d
s y n c h r o n i z a t i o n a l g o r i t h m s i m u l t a n e o u s l y . T h e p r o o f s c a n n o t b e d e c o u p l e d .

22

processor q: read Cq (t,) , send it
\

processor p: receive it, read Cp (t,

I I >
t 1 t2

Figure 3 . - reading another processor’s clock

If the exact communication delay
the exact skew %p at real time t, could be calculated by

Bqp (i.e. Cq (t2) - Cq (tl)) were known, then

Since the communication delay is variable,
never exactly known by the synchronization algorithm.
the synchronization system chooses a value b approximately equal to E(Bqp)
which is used to compute an apparent skew

Bqp is a random variable and is
Thus, the designer of

Aqp by the following formula:

These apparent skews are used to calculate the clock correction value
according to the synchronization algorithm.

The apparent skew Aqp differs from the actual skew php by an error
= Aqp - %p = Bqp - b. There are two components to this error: e¶ P

where p = E(Bqp) - b. The first component, Bqp - E(Bqp), is the variation
due to the random nature of the communication. The second component, ,u, is a
bias due to the error in choosing b. Also, it follows from the above formula
that

23

The performance of the theoretical algorithms are typically specified by
theorems which are expressed in terms of
eqp. Unfortunately, eqp is defined in terms of real time rather than
observable clock time. The formula

E, a theoretical upper bound on

which relates the theoretical eqp
highly accurate approximation in appendix A.

to observable clock values is shown to be a

The major source of read error in the broadcast method is the busy-wait in
If the looping time of the software which waits for the arrival of a

If special circuitry is designed to recognize the arrival of

the CW.
broadcasted clock value is w milliseconds, the maximum read error is at least
w milliseconds.
a clock value and immediately latch the current value of its own clock this can
decrease the read error considerably.

identical to the broadcast method. However, message facilities are often
implemented with hardware interrupts. It is very dangerous to allow a
processor to interrupt another processor in a fault-tolerant computer.
systems for a critical system are best implemented by periodically having the
receiving processors examine their mail-boxes.

The concept of sending a specific processor a message is essentially

Message

Step 3 - Correcting Local Clocks

Once the values Aqp have been determined by a processor p, the fault-
tolerant clock synchronization algorithms require the determination of a
correction factor 4. These calculations are usually very simple, e.g. a mean
or median. Next, the processor must correct its local clock. Note, that it is
not enough to merely maintain a "correction value" in local memory.
necessary that the internal state of the clock which fires the clock-interrupt
be changed, since this interrupt triggers the periodic execution of the
synchronization task.
instruction must be provided by the processor to enable program-level
modification of the clock.

It is

In software-implemented algorithms, a special

24

APPENDIX B

USEFUL APPROXIMATIONS INVOLVING CLOCK FUNCTIONS

.

Lemma 1 If clock r is non-faulty and A is small, then r(T,+A) = r(T,)
+ A .

From the definition of p we have

Letting A = T2-~, :

Since p is typically on the order of loh6 and A is usually much less than
and r is typically on the order of we have

lr(Tl+A) - r(T,) - AI (p / 2) A lo-*
r(T, 1 r(T,) l o e 2

rel. error - < - < - 10-6
Thus, r(T,+A) = r(T,) + A .

Lemma 2 If clock C is non-faulty and A is small, then C(y+A) = C(y) + A

Proof: L e t x = r(T+A) and y = r(T). Then C(x) = T + A and C(y) = T since C is
the inverse function of r.
1, we have: x = y + A . Hence, C(x) = C(y+A). Substituting C(y) + A for C(x),
we have C(y+c\) = C(y)+A.

It directly follows that C(x) = C(y) + A . By Lemma

proof: By definition eqp = rP(T+Aqp)-rq(T).
r,(T) implies C,(x) = T + Aqp and Cq(t) = T.
by the definition eqP = x - t, we have C,(eqp+t) = Cq(t) + A q p .

we conclude that e,, + C, (t) = Cq (t) + A , , .

Letting x = r,(T+A,,) and t =

Thus, Cp(x) = Cq(t) + A q P . Since
From lemma 2

25

REFERENCES

1. Butler, Ricky W.; Palumbo, Daniel L.; and Johnson, Sally C.: Application of
a Clock Synchronization Validation Methodology to the SIFT Computer System,
IEEE Fifteenth International Symposium on Fault-Tolerant Computing (FTCS-
15), June 19-21, 1985

r

2. Lamport, Leslie; and Melliar-Smith, P. M.: Synchronizing Clocks in the
Presence of Faults, Journal of the ACM, Vol. 32, No l., January 1985.

3 . Lundelius, Jennifer; and Lynch, Nancy: A New Fault-Tolerant Algorithm for
Clock Synchronization, ACM Conference on Principles of Distributed
Computing, 1984.

4. Halpern, Joseph Y; Simmons, Barbara; Strong, Ray and Dolev, DaMy: Fault-
Tolerant Clock Synchronization, ACM Conference on Principles of Distributed
Computing, 1984.

5. Rivest, R. L.; Shamir, A; and Adleman, L: A Method for Obtaining Digital
Signatures and Public-key Cryptosystems, Communications of the ACM, Vol.
21, NO. 2, 1978, pp.120-126.

6. Kessels, J. L. W.: TWO Designs of a Fault-Tolerant Clocking System, IEEE
Transactions on Computers, Vol. C-33, No. 10, October 1984.

7. Dijkstra, Edsger W.: A Discipline of Programming, Prentice-Hall, Inc. 1976.

8. Smith, T. B.: Fault-Tolerant Clocking System, IEEE Eleventh International
Symposium on Fault-Tolerant Computing (FTCS-111, 1981, pp. 262-264.

9. Hopkins, A. L., et. al.: FTMP -- A highly reliable fault-tolerant
multiprocessor for Aircraft, Proceedings of the IEEE, Vol. 66, pp. 1221-
1239, Oct. 1978.

10. Krishna, C. M.; Shin, Kang G.; and Butler, Ricky W.: Ensuring Fault
Tolerance of Phase-Locked Clocks, IEEE Transactions on Computers, Vol. c-
34, No. 8, August 1985.

26

Report Documentation Page

1. Report No.

NASA TM- 100553

2. Government Accession No.

7. Author(s1

17. Key Words (Suggested by Author(s))

R i cky !,I. B u t l e r

18. Distribution Statement

9. Performing Organization Name and Address

19. Security Classif. (of this report) 20. Security Classif. (of this pagel 21. No. of pages

NASA Lang ley Research Center
Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

N a t i o n a l Ae ronau t i cs and Space Admini s t r a t i o n
Washington , DC 20546-0001

15. Supplementary Notes

22. Price

3. Recipient‘s Catalog No.

5. Report Date

Februarv 1988

6. Performing Organization Code

~

8. Performing Organization Report No.

10. Work Unit No.

505-66-2 1-0 1
11. Contract or Grant No.

13. Type of Report and Period Covered

Techn ica l Memorandum
14. Sponsoring Agency Code

Clock s y n c h r o n i z a t i o n
F a u l t t o l e r a n t
Formal v e r i f i c a t i o n
Design p r o o f

U n c l a s s i f i e d - U n l i m i t e d

S t a r Category 62

I U n c l a s s i f i e d I 27
I U n c l a s s i f i e d 1 A03

1
NASA FORM 1626 OCT 86

I

